Machine Learning and Instrument Autonomy: Allowing Spacecraft To Do More, With Less

Jack Lightholder

When to Use ML / Autonomy?

Reaction Time

ML # Expert Replacement

- Eliminates drudgery
- Operates impossibly fast
- Focuses experts on interesting cases
- Enables larger human feats

Data Science asks: "Would you like to have the same output with $^{1}/_{6}$ the experts or x6 the output with your current experts?"

Detecting Features of Interest

Visual Salience: Identified areas of the image that differ from surrounding areas.

Preliminary Cloud Classification results from EO-1

TextureCam: Pixel classification for cloud screening, downlink prioritization

Current Model

Host of Scientists, Manual Selection

Courtesy Dr. Lukas Mandrake, JPL

Data-Driven Assistance

Science Support Data Mining

Martian Orbit
Unmapped /
changing surface

Ops Decision SupportFocus of Attention Tools

On-board Science
Detect Transients,
Summarize Content

Summarization Technology

Scene-Wide Labels

Scene Feature	Present			
Dunes	Yes			
Barchan Dunes	No			
Small Craters	Yes			
Large Craters	Yes			
Fresh Impacts	No			
RSL	No			

Terrain Classification

Terrain Type	Image %
Flat Plain	50%
Crater Slope	25%
Dune Field	10%
Ridges	15%

Landmark Identification

Landmark Type	Number			
Small Craters	16			
Ridges	4			
Dunes	1			

Landmark Recognition

Techniques

- Salience Estimation
 - Created by Genetic Algorithm
 - Finds optimal blend of leading techniques

Landmark Classification

- Naïve Bayes
- Support Vector Machines
- Neural Network (deep learning)

Drs. Kiri Wagstaff
Gary Doran
Ravi Kiran
Lukas Mandrake
Norbert Schorghofer
Alice Stanboli

Successfully ported to:

- PDS / Planetary Image Atlas
- IPEX: Atmel 400 MHz

Landmark Type	Number
Small Craters	16
Ridges	4
Dunes	1

Summarization

Landmark Classification

Scene Labeling

Drs. Alphan Altinok Brian Bue Alice Stanboli Kiri Wagstaff

"Scalable Scene Analysis" System

- Convolutional Neural Network
- Implemented on PDS Atlas
- Currently trained for Cassini & MSL Images

surface horizon clouds transients rings craters plume sky view starfield body types multiple objects phases artifact eclipse haze noise ripple camera distance over exposure 19 categories – 53 labels

Terrain Classification

TextureCam System

- Random Forest based pixel classifier
- Extremely fast & parallelizable

Successfully ported to:

- MSL VSTB Flight Testbed (RAD750) = ~100 HiRise images/day
- EO-1: Mongoose V (M5) processor
- IPEX: Atmel 400 MHz

Cima Lava Fields

IPEX Cube-Sat Feature
Identification & Cloud Mask

Autonomous Exploration for Gathering Increased Science

- Target & Zap Rock
- Manually Scheduled Targets
- Round Trip Delays
- Trouble hitting 1st time
- Targeted science not possible right after drive
- Autonomy selects interesting targets
- Refines targeting automatically
- ~30-100% additional ChemCam science targets on drive sols

Drs. Tara Estlin, Dan Gaines, Gary Doran, Raymond Francis, et al.

Mars Exploration Rover (2009)

Mars Science Laboratory (2012)

- Provides intelligent targeting and data acquisition by:
 - analyzing images of the rover scene
 - identifying high-priority science targets (e.g., rocks)
 - taking follow-up imaging of these targets with no ground communication required

Mission Agility Through Onboard Analysis

Analyze data acquired onboard spacecraft and respond based on analysis

Near Earth Asteroid Scout

Imaging Challenges

Target Detection and Approach
Ephemeris determination

Target Position Uncertainty

Spacecraft Pointing and Camera Limitations

Medium Field Imaging
Shape, spin, and local environment

Short Flyby Time (<30 minutes)

Uncertain Environment

Close Proximity Imaging
Local scale morphology, terrain
properties

Data Value Analysis and Sorting

Short Time at Closest Approach (<10 minutes)

Limited Downlink of 1 Kbps

Raw Data is Messy

Raw Data is Messy

Processed Data

Does Your Target Look "As Expected"?

Plumes are Scientifically Exciting

Plumes gives scientists insights into the volatiles located throughout the solar system.

Unfortunately, they're not scheduled. We have to react fast.

Plume Detection

- Detects bright material beyond the limb
- Enables monitoring campaigns, target-relative data acquisition
- Detects most plumes with zero false positives

Enceladus (Cassini)

Comet Tracking

Hartley 2 flyby
Original Sequence

Agile Science Planning

MOSAIC: Mars on-site shared analytics information and computing

Understand and maximize the effect of HPSC on Mars exploration

Goals:

- 1. Distributed computing for Mars
- 2. Quantify HPSC impact on missions
- 3. Explore trade space of HPSC designs

Research Tasks

- Resource-aware process scheduling across a network of agents
- Model-based flight computing configuration for multi-processor / multi-robot systems
- Optimize routing and storage of information across a network of agents
- Extend Delay / Disruption tolerant networking for use in distributed systems

1. Develop responsive, model-driven distributed computing stacks

Tasks

- Benchmark existing flight software on a variety of computing hardware
- · Develop analytical models to estimate runtime, data, energy requirements as a function of HPSC config
- · Develop distributed process dispatcher (load balancing) based on above models
- Develop distributed data product consensus over DTN

1. Develop responsive, model-driven distributed computing stacks

Working Example:

- Can optimally solve Mars 2020 fast-traverse FSW allocation, given HPSC + network configuration
- Output: minimum-cost allocation (time, power, etc)
- See: "Dynamic Shared Computing Resources for Multi-Robot Mars Exploration" i-SAIRAS, 2018

2. Understand impact of HPSC configurations and design on missions

Tasks

- Given HPSC configuration, solve optimal schedule (previous) to get runtime, data, energy requirements
- Then, simulate effects on candidate missions

Worked example for Mars 2020 rover mission

4 hardware design points, path replayed in 3D

Mars 2020 is reaches its destination 19% sooner driving through Jezero crater when it has access to three or four cores of an HPSC, either onboard, or nearby with >=1 Mbps data rate.

- Main gains are from better path optimization and better sensing
- Secondary gains from decreased sensing and planning time required

MOSAIC: Mars On-Site Shared Analytics Information and Computing

Methodology

- Given prior models, iteratively "sample" HPSC / network config to evaluate metrics
- Where possible, use "shadow cost" to determine choke point
 - (e.g., data transfer, communication bandwidth, onboard storage, or asymptotic runtime)
- Not in isolation! Consider FSW algorithms, models of environment, etc.

3. Explore trade space of networked multi-processor configurations

Frequency of assisting CPU (max 1.6 Ghz)

From Mars 2020 analysis:

- Main gains are parallelization (3,4 core is mostly level), even at low (8%) availability
- Bottleneck is data rate, solution space is "level" w.r.t. compute

Science Data Prioritization

Downlink

Engineering Data

0 - 100MBits/Sol (Fetch rover)

Energy Optimal AutoNav Preliminary Result

Energy optimal vs time optimal

- Used Jezero Crater's DEM and terrain data
- Simulation based on Fetch Rover design
 - Performed in collaboration with Austin Nicholas
 - Used Fetch Rover's solar panel area, battery size, min charge level, nominal driving energy
 - Used MSL's slip curve
 - Used MER/InSight's dust accumulation model; assumed 100th Sol
 - Sun elevation > 10 deg
 - M2020 driving speed

New Way of Commanding AutoNav

M2020: Command by waypoints

- Uplink waypoint and KOZs only
- Plan min-time path to waypoint

MAARS: Command by costmap

34	33	33	32	31	30	30	31	32	33
35	34	34	33	32	31	31	32	33	34
36	35	35	34	33	32	32	33	34	35
37	36	36	35	34	33	33	34	35	36
38	37	37	36	35	34	34	35	36	37
39	38	38	37	36	35	35	36	37	38
40	39	39	38	37	36	36	37	38	39
		40	39	38	37	37	38	39	40
				39	38	38	39	40	41
				40	39	39	40	41	42
47	46	44	43	41	40	40	41	42	43
47	46	44	43	41	41	41	42	43	44
48	47	45	44	42	42	42	43	44	45
47	45	44	43	43	43	43	44	45	46
48	46	45	44	44	44	44	45	46	47
49	47	46	45	45	45	45	46	47	48
50	48	47	46	45	46	46	47	48	49
51	49	48	47	47	47	47	48	49	50
52	50	49	48		48	48	49	50	51
					49	49	50	51	52

- Uplink global cost-to-go map
 - Cost to the strategic goal from each cell
- Min local cost + global cost-to-go

Work by Kyon Otsu

Concurrent Path Planning & Scheduling

Provided by Austin Nicholas

Preliminary Planning Results

Seasonal variation

- Used Jezero Crater's DEM and terrain data
- Simulation based on Fetch Rover design

Jezero Crater

- Sun elevation > 10 deg
- M2020 driving speed

Vision-based Classification: Data Collection by Athena

Energy-based Terrain Classification

Single Wheel Testbed

IR-based Terrain Classification: Proof-of-concept

- Created two types of sandy area in Mars Yard:
 - Compact (~80 kPa) and Soft (~30 kPa)
- Measured temperature and soil pressure at 30 locations
- Temperature was collected from 6:30am to 7 pm

Demonstrating HPSC

Bridging The Gap: Actual Performance Metrics

Demonstrating HPSC

Unique Engineering Sensors

Sensors reporting

- Context cameras
- Pressure Grid
- Force/Torque
- Vertical Displacement
- Optical Flow
- IMU (accelerations)

jpl.nasa.gov